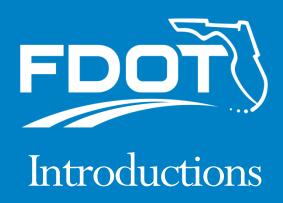


DISCLAIMER:

This PowerPoint presentation was prepared by the Florida Department of Transportation (FDOT) staff and has been provided as part of a public records request. Any dissemination of this presentation by anyone or entity other than FDOT staff is not official. Any questions can be sent to FDOT-D6PIO@dot.state.fl.us.

This presentation may not be altered.


Kendall Drive **Rapid Transit** PD&E Study

Study Progress Update

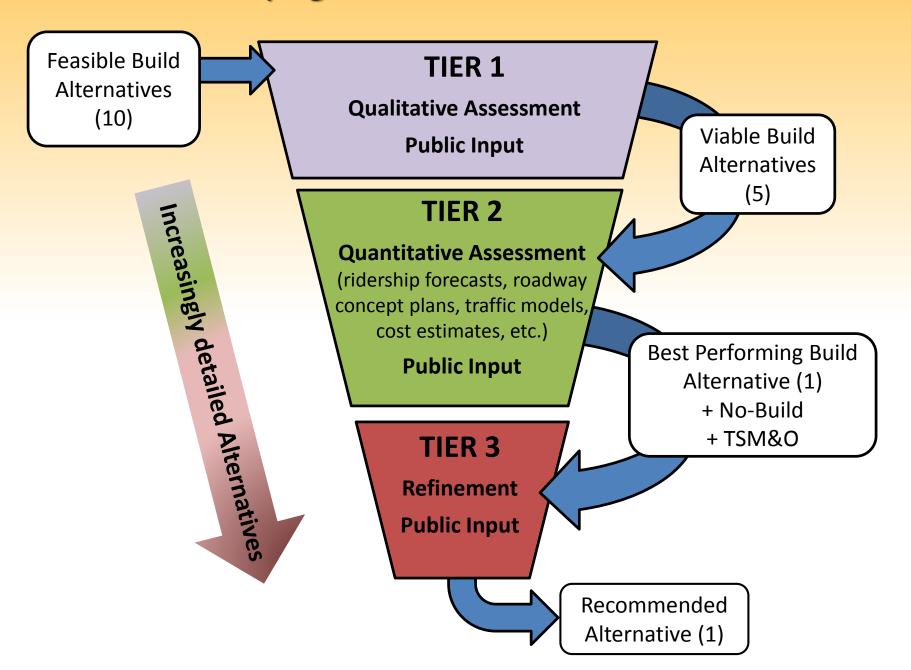
July 23, 2019

SR 94/SW 88 Street/Kendall Drive

Agenda

- Project Overview
- Tiered Alternatives Screening Process
- Tier 2 Analysis Status
- Next Steps

Study Objective


This study focuses on improving travel options along Kendall Drive through the implementation of costeffective, high-ridership, new rapid transit service with supporting pedestrian and bicycle facilities

Current issues with the corridor:

- Operating at capacity during peak travel times with travel demand increasing
- The rate of car crashes continues to increase
- Transit operating in mixed traffic results in slow speeds and low reliability

Identifying the Recommended Alternative

Tier 2 Build Alternatives

Five Viable Alternatives were identified:

- Curbside Lanes Bus Rapid Transit (BRT)
- Median Lanes BRT
- Curbside Lanes BRT with Reversible Lanes for General Purpose Traffic
- Elevated Heavy Rail Transit (HRT)
- Hybrid HRTI (Elevated & At-grade)

Build Alternative # 1: Curbside Lanes BRT

Roadway Configuration	Transit Improvement	Service Frequency
Repurpose curbside lane in each direction to a bus lane that allows right-turning vehicles	Dedicated Bus Lane 13 New Stations	BRT service 10 min. peak 15 min. off-peak

Pros

- Lower cost alternative
- 2. Maintain curbside access to businesses/residences
- 3. High capacity, frequent transit service
- 4. Maintains left turns

1.

Cons

- 1. Loss of roadway capacity
- Access management impacts at station location
- Lane enforcement, vehicle conflicts
- Traffic Diversion to other streets (3% AM/10% PM)

Build Alternative # 2: Median Lanes BRT Roadway Configuration Transit Improvement

Dedicated Bus Lane

13 New Stations

Repurpose center lane in each

direction to a bus lane

Cons

Lower cost alternative

2. Maintain curbside access to businesses/residences

Pros

3. High capacity, frequent transit service

4. Maintains left turns at major intersections

1. Loss of roadway capacity

2. Access management impacts at station location

3. Lane enforcement, vehicle conflicts

Traffic Diversion to other streets (3% AM/10% PM)

Service Frequency

BRT service

10 min. peak

15 min. off-peak

Build Alternative # 3: Curbside Lanes BRT with Reversible Lanes for General Purpose Traffic

Roadway Configuration	Transit Improvement	Service Frequency
Repurpose curbside lane in each direction to a bus lane that allows right-turning vehicles	Dedicated Bus Lane 13 New Stations	BRT service 10 min. peak 15 min. off-peak

Pros

- 1. Lower cost alternative
- 2. Maintain curbside access to businesses/residences
- 3. High capacity, frequent transit service
- Maintains left turns at major intersections
- 5. Maintains existing number of lanes in peak direction

- 1. Loss of roadway capacity
 - . Access management impacts at station location
 - Lane enforcement, vehicle conflicts

Build Alternative # 4: Elevated HRT Roadway Configuration Transit Improvement Service Frequency HRT service 9 min. peak 10 New Stations 15 min. off-peak

Pros

- High capacity, frequent transit service
- 2. No loss of roadway capacity
- 3. Direct connection to Downtown
- 4. Utilize existing rail vehicles

<u>Cons</u>

- 1. High Cost
- Long term implementation and construction impacts
- 3. Major visual impacts

Build Alternative # 5: Hybrid HRT

Roadway Configuration	Transit Improvement	Service Frequency
Repurpose median to rail guideway Lane reduction in each direction west of SW 142 Avenue	Elevated and At-grade Heavy Rail Guideway 10 New Stations	HRT service 9 min. peak 15 min. off-peak

Pros

- High capacity, frequent transit service
- 2. Direct connection to Downtown
- 3. Utilize existing rail vehicles

Cons

- 1. High Cost
- Long term implementation and construction impacts
- 3. Major visual impacts
- 4. High noise and vibration impacts (at-grade segment)
- 5. Closure of median openings/community cohesion (at-grade segment)

Tier 2 Traffic Operations Analysis

- Elevated Metrorail no lane repurposing and greater mode shift
- Hybrid Metrorail similar to previous but some additional delay from at-grade portion
- Curbside Lanes BRT with Reversible
 Lanes for General Purpose Traffic minor mode shift and number of lanes remains the same in the peak direction
- TSM&O no mode shift, Transit Signal Priority (TSP), better signal timings and other minor improvements to enhance flow
- Curbside Lanes BRT small mode shift and lane repurposing
- Median Lanes BRT similar to previous but without bus bays for local buses

Next Steps

ONGOING

Meet with Key Stakeholders and Agencies TPO Board Endorsement of Recommended Alternative TPO Board
Approval of
Locally
Preferred
Alternative

SUMMER 2019

FALL 2019

WINTER 2019/20

SPRING 2020

SUMMER 2020

Public Meeting
Presenting the
Recommended
Alternative

Public Hearing Presenting the Environmental Findings

For more information contact:

FDOT Project Manager

Nilia Cartaya

Email: Nilia.cartaya@dot.state.fl.us

Phone: 305-640-7557

Public Information Specialist Carlos Garcia

Email: Carlos@iscprgroup.com

Phone: 305-573-0089